

### Part Number: F5 COMPATIBLE Networks OPT-0025-00

## F5 COMPATIBLE Networks OPT-0025-00 Quick Spec:

| Form Factor:          | QSFP             |
|-----------------------|------------------|
| TX Wavelength:        | 850nm            |
| Reach:                | 150m             |
| Cable Type:           | MMF              |
| Rate Category:        | 40GBase          |
| Interface Type:       | SR4              |
| DDM:                  | Yes              |
| Connector Type:       | MPO              |
| Optical Power Budget: | 1.9dB            |
| TX Power Min/Max:     | -7.6 to +2.4 dBm |
| RX Power Min/Max:     | -9.5 to 2.4 dBm  |



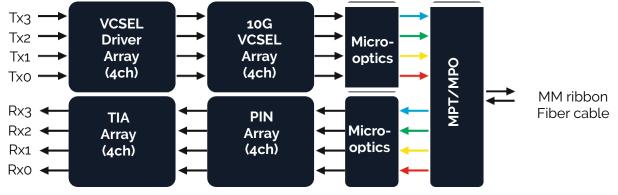
## F5 COMPATIBLE Networks OPT-0025-00 Product Features

- 4 independent full-duplex channels, up to 11.2Gbps data rate per channel
- MTP/MPO optical connector
- QSFP+ MSA compliant
- Digital diagnostic capabilities
- Capable of over 100 m transmission on OM3 multi-mode ribbon fiber
- CML compatible electrical I/O
- Power Dissipation < 1.5W
- Single +3.3V power supply
- XLPPI electric interface (with 1.5W Max power)
- RoHS-6 compliant
- Operating case temperature:
  - $\circ$  Standard 0 to 70°C
  - $\circ$  Industrial -40 to +85  $^{\circ}$ C

## F5 COMPATIBLE Networks OPT-0025-00 Applications

- Rack to rack, data center
- 40G Ethernet, Infiniband QDR, DDR and SDR

## F5 COMPATIBLE Networks OPT-0025-00 Overview


The OPT-0025-00 is a parallel 40Gbps Quad Small Form-factor Pluggable (QSFP+) optical module. It provides increased port density and total system cost savings. The QSFP+ full-duplex optical module offers 4 independent transmit and receive channels, each capable of 10Gbps operation for an aggregate data rate of 40Gbps over 100 meters of OM3 multi-mode fiber. An optical fiber ribbon cable with an MPO/MTPTM connector can be plugged into the QSFP+ module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. Electrical connection is achieved through a z-pluggable 38-pin IPASS® connector. The module operates via a single +3.3V power supply. LVCMOS/LVTTL global control signals, such as Module Present, Reset, Interrupt and Low Power Mode, are available with the modules. A 2-wire serial interface is available to send and receive more complex control signals, and to receive digital diagnostic information. Individual channels can be addressed and unused channels can be shut down for maximum design flexibility. The OPT-0025-00 is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module offers very



high functionality and feature integration, accessible via a two-wire serial interface.

## F5 COMPATIBLE Networks OPT-0025-00 Functional Diagram

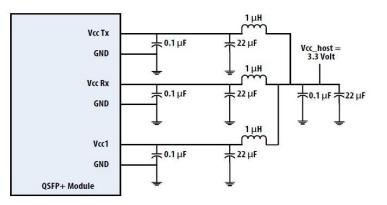
The OPT-0025-00 converts parallel electrical input signals into parallel optical signals, by a driven Vertical Cavity Surface Emitting Laser (VCSEL) array. The transmitter module accepts electrical input signals compatible with Common Mode Logic (CML) levels. All input data signals are differential and internally terminated. The receiver module converts parallel optical input signals via a photo detector array into parallel electrical output signals. The receiver module outputs electrical signals are also voltage compatible with Common Mode Logic (CML) levels. All data signals are differential and support a data rates up to 10 Gbps per channel. Figure 1 shows the functional block diagram of the TR-QQ85S-Noo QSFP+ Transceiver. A single +3.3V power supply is required to power up the module. Both power supply pins VccTx and VccRx are internally connected and should be applied concurrently. As per MSA specifications the module offers 7 low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, LPMode, ModPrsL and IntL



#### Figure 1. Functional diagram

Module Select (ModSelL) is an input pin. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP+ modules on a single 2-wire interface bus – individual ModSelL lines for each QSFP+ module must be used. Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the QSFP+ memory map. The ResetL pin enables a complete module reset, returning module settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL (Interrupt) signal with the Data\_Not\_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset. Low Power Mode (LPMode) pin is used to set the maximum power consumption for the module in order to protect hosts that are not capable of cooling higher power modules, should such modules be accidentally inserted. Module Present (ModPrsL) is a signal local to the host board which, in the absence of a module, is normally pulled up to the host Vcc. When a module is inserted into the connector, it completes the path to ground though a resistor on the host board and asserts the signal. ModPrsL then indicates a module is present by setting ModPrsL to a "Low" state. Interrupt (IntL) is an output pin. Low indicates a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.




#### Absolute Maximum Ratings

| Parameter                   | Symbol          | Min  | Max             | Unit |
|-----------------------------|-----------------|------|-----------------|------|
| Storage Temperature         | Ts              | -40  | +85             | °C   |
| Power Supply Voltage        | Vcc             | -0.5 | 3.6             | V    |
| Input Voltage)              | V <sub>IN</sub> | -0.5 | V <sub>cc</sub> | V    |
| Damage Threshold, each Lane | THd             | 2.4  |                 | dBm  |

#### **Recommended Operating Conditions**

| Parameter                        | Symbol | Min | Тур     | Max  | Unit |
|----------------------------------|--------|-----|---------|------|------|
| Operating Case Temp (Standard)   | TOP    | 0   |         | 70   | °C   |
| Operating Case Temp (Industrial) | TOP    | -40 |         | 85   | °C   |
| Power Supply Voltage             | Vcc    | 3.1 | 3.3     | 3.5  | V    |
| Baud Rate                        |        |     | 10.3125 | 11.2 | Gb/s |
| Link Distance with OM3 MMF       | D      |     |         | 100  | m    |
| Link distance with OM4 MMF       | D      |     |         | 150  | m    |

## Recommended Power Supply Filter





#### Electrical Characteristics

| Parameter         | Symbol | Min | Тур | Мах | Unit |
|-------------------|--------|-----|-----|-----|------|
| Power Consumption |        | 0   |     | 1.5 | W    |
| Supply Current    | lcc    |     |     | 350 | mA   |

## Electrical Characteristics – Transmitter (each lane)

| Parameter                                        | Symbol | Min    | Тур        | Max         | Unit | Notes                         |
|--------------------------------------------------|--------|--------|------------|-------------|------|-------------------------------|
| Single-ended Input Voltage Tolerance<br>(Note 2) |        | -0.3   |            | 4.0         | V    | Referred to TP1 signal common |
| AC Common Mode Input Voltage<br>Tolerance (RMS)  |        | 15     |            |             | mV   | RMS                           |
| Differential Input Voltage Swing<br>Threshold    |        | 50     |            |             | mVpp | LOSA Threshold                |
| Differential Input Voltage Swing                 | Vin,pp | 190    |            | 700         | mVpp |                               |
| Differential Input Impedance                     | Zin    | 90     | 100        | 110         | Ω    |                               |
| Differential Input Return Loss                   |        | See IE | EE 802.3ba | a 86A.4.1.1 | dB   | 10MHz - 11.1GHz               |
| J2 Jitter Tolerance                              | Jt2    |        | 0.17       |             | UI   |                               |
| J9 Jitter Tolerance                              | Jt9    |        | 0.29       |             | UI   |                               |
| Data Dependent Pulse Width Shrinkage<br>(DDPWS)  |        | 0.07   |            | UI          |      |                               |
| Tolerance<br>Eye Mask Coordinates (X1, X2,       |        |        | 0.11, 0.3  | 1           | UI   |                               |
| Y1, Y2}                                          |        |        | 95, 350    |             | mV   |                               |



#### Electrical Characteristics – Receiver (each lane)

| Parameter                                        | Symbol  | Min             | Тур          | Max      | Unit                           | Notes                     |
|--------------------------------------------------|---------|-----------------|--------------|----------|--------------------------------|---------------------------|
| Single-ended Output Voltage Threshold            |         | -0.3            |              | 4.0      | V                              | Referred to signal common |
| AC Common Mode Output Voltage<br>Tolerance (RMS) |         |                 |              | 7.5      | mV                             | RMS                       |
| Differential Output Voltage Swing<br>Threshold   | Vout,pp | 300             |              | 850      | mVpp                           |                           |
| Differential Output Impedance                    | Aout    | 90              | 100          | 110      | Ohm                            |                           |
| Termination Mismatch at 1MHz                     |         |                 |              | 5        | %                              |                           |
| Differential Output Return Loss                  | See     | e IEEE 802.3    | oa 86A.4.2.1 |          |                                | 10MHz - 11.1GHz           |
| Common mode Output Return Loss                   | See     | e IEEE 802.3k   | ba 86A.4.2.2 |          |                                | 10MHz - 11.1GHz           |
| Output Transition Time                           |         | 28              |              |          | ps                             | 20% to 80%                |
| J2 Jitter Tolerance                              | J02     |                 |              | 0.42     | UI                             |                           |
| J9 Jitter Tolerance                              | Jog     | <i>Jog</i> 0.65 |              | UI       |                                |                           |
| Eye Mask Coordinates [X1, X2,<br>Y1, Y2]         |         | 0.29<br>150,    | -            | UI<br>mV | Hit Ratio = 5x10 <sup>-5</sup> |                           |

Notes:

1. Power-on initialization time is the time from when the power supply voltages reach and remain above the minimum recommended operating supply voltages to the time when the module is fully functional.

2. The single ended input voltage tolerance is the allowable range of the instantaneous input signals.



# F5 COMPATIBLE Networks OPT-0025-00 Optical Characteristics – Transmitter

| Parameter                                                   | Symbol | Min                                 | Тур | Max  | Unit  | Notes           |
|-------------------------------------------------------------|--------|-------------------------------------|-----|------|-------|-----------------|
| Center Wavelength                                           | λο     |                                     | 840 | 850  | 860   | nm              |
| RMS Spectral Width                                          | Rm     |                                     |     | 0.5  | 0.65  | nm              |
| Average Launch Power (each Lane)                            | PAVG   | -7.6                                | -2  | +1   | dBm   |                 |
| Optical Modulation Amplitude (OMA) (each Lane)              | РОМА   | -5.6                                |     | +3   | dBm   |                 |
| Peak Power (each Lane)                                      | PPt    |                                     |     | +4   | dBm   |                 |
| Launch Power in OMA minus Transmitter and                   |        | -6.5                                |     |      | dB    |                 |
| Dispersion Penalty (TDP), each Lane                         |        |                                     |     |      |       |                 |
| TDP (each Lane)                                             |        |                                     |     | 3.5  | dB    |                 |
| Extinction Ratio                                            | ER     | 3                                   |     |      | dB    |                 |
| Relative Intensity Noise                                    | RIN    |                                     |     | -128 | dB/Hz | 12dB reflection |
| Optical Return Loss Tolerance                               |        |                                     |     | 12   | dB    |                 |
| Transmitter Eye Mask Definition<br>{X1, X2, X3, Y1, Y2, Y3} |        | {0.23, 0.34, 0.43, 0.27, 0.35, 0.4} |     |      |       |                 |
| Average Launch Power OFF (each Lane)                        | Poff   |                                     |     | -30  | dBm   |                 |

Note: Transmitter optical characteristics are measured with a single mode fiber.

## F5 COMPATIBLE Networks OPT-0025-00 Optical Characteristics -Receiver

| Parameter                                          | Symbol | Min  | Тур | Max  | Unit | Notes |
|----------------------------------------------------|--------|------|-----|------|------|-------|
| Center Wavelength                                  | λο     | 840  | 850 | 860  | dBm  |       |
| Damage Threshold                                   | Thd    | 3.4  |     |      | dBm  |       |
| Average Receive Power (each Lane)                  |        | -9.5 |     | +2.4 | dBm  |       |
| Receiver Reflectance                               | RR     |      |     | -12  | dB   |       |
| Receive Power (OMA) (each Lane)                    |        |      |     | 3    | dBm  |       |
| Receiver Sensitivity in OMA (each Lane)            | SEN    |      |     | -5.4 | dBm  |       |
| Receiver Sensitivity per Channel                   | PSens  |      | -12 | -10  | dB   |       |
| LOS Assert                                         | LOSA   | -21  |     | -16  | dBm  |       |
| LOS Deassert                                       | LOSD   | -19  |     | -13  | dBm  |       |
| LOS Hysteresis                                     | LOSH   | 0.5  |     |      | dB   |       |
| Receiver Electrical 3dB upper cut-off<br>Frequency | Fc     |      |     | 12.3 | GHz  |       |
| (each Lane)                                        |        |      |     |      |      |       |

Notes:

1. Even if the TDP < 0.8 dB, the OMA min must exceed theminimum value specified here.

2. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on



Build It Bigger. Build It Faster. Build It Sooner.

one lane. The receiver does not have to operate correctly at this input power.

- 3. Measured with conformance test signal at receiver input for BER = 1x10-12.
- 4. Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

## F5 COMPATIBLE Networks OPT-0025-00 Digitial Diagnostics Function

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

| Parameter                                  | Symbol      | Min  | Тур | Max | Unit   | Notes                               |
|--------------------------------------------|-------------|------|-----|-----|--------|-------------------------------------|
| Temperature monitor absolute error         | DMITEMP     | -3   |     | 3   | deg. C | Over operating temperature<br>range |
| Supply voltage monitor absolute error      | DMIVCC      | -0.1 |     | 0.1 | V      | Over Full operating range           |
| Channel RX power monitor absolute<br>error | DMIRX_CH    | -2   |     | 2   | dB     | 1                                   |
| Channel Bias current monitor               | DMIIbias_CH | -10% |     | 10% | mA     |                                     |
| Channel TX power monitor absolute<br>error | DMITX_CH    | -2   |     | 2   | dB     | 1                                   |

Note 1: Due to measurement accuracy of different multi-mode fibers, there could be an additional ±1dB fluctuation, or ± 3dB total accuracy.

#### Mode-Conditioning Patch Cable

Figure 2. shows the orientation of the multi-mode facets of the optical connector

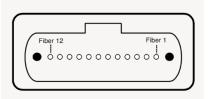



Figure 2 Optical connector

| Fiber | Description | PIN | Description |
|-------|-------------|-----|-------------|
| 1     | Rx (0)      | 7   | Not used    |
| 2     | Rx (1)      | 8   | Not used    |
| 3     | Rx (2)      | 9   | Tx (3)      |
| 4     | Rx (3)      | 10  | Tx (2)      |
| 5     | Not used    | 11  | Tx (1)      |
| 6     | Not used    | 12  | Tx (0)      |



## F5 COMPATIBLE Networks OPT-0025-00 Optical and Electrical **Characteristics**

| Parameter       | Symbol | Min | Тур     | Max | Unit |
|-----------------|--------|-----|---------|-----|------|
| 50 / 125 um MMF |        |     | 300     |     | m    |
| Data Rate       |        |     | 10.3125 |     | Gbps |

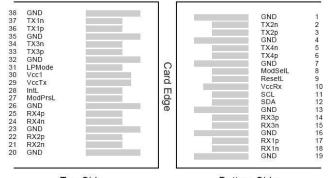
## F5 COMPATIBLE Networks OPT-0025-00 Optical and Electrical **Characteristics - Transmitter**

| Parameter                                     | Symbol  | Min      | Тур          | Max    | Unit    |
|-----------------------------------------------|---------|----------|--------------|--------|---------|
| Centre Wavelength                             | С       | 840      | 850          | 860    | nm      |
| Spectral Width (RMS)                          |         |          |              | 0.45   | nm      |
| Average Output Power                          | Pout    | -6       |              | -1     | dBm     |
| Extinction Ratio                              | Er      | 3.0      | 5.0          |        | dB      |
| Output Optical Eye                            |         | IEEE 802 | 2.3-2005 Com | oliant |         |
| Transmitter Dispersion Penalty                | TDP     |          |              | 3.9    | dB      |
| Input Differential Impedance                  | ZIN     | 90       | 100          | 110    | Ω       |
| TX_Disable Assert Time                        | t_off   |          |              | 10     | us      |
| TX_DISABLE Negate Time                        | t_on    | -        | -            | 1      | ms      |
| TX_BISABLE time to start reset                | t_reset | 10       | -            | -      | us      |
| Time to initialize, include reset of TX_FAULT | t_init  | -        | -            | 300    | ms      |
| TX_FAULT from fault to<br>assertion           | t_fault | -        | -            | 100    | us      |
| Total Jitter                                  | ΤJ      | -        | -            | 0.28   | UI(p-p) |
| Data Dependant Jitter                         | DDJ     | -        | -            | 0.1    | UI(p-p) |
| Uncorrelated Jitter                           | UJ      | -        | -            | 0.023  | RMS     |

## F5 COMPATIBLE Networks OPT-0025-00 Optical and Electrical **Characteristics - Receiver**

| Parameter                        | Symbol | Min | Тур | Max   | Unit |
|----------------------------------|--------|-----|-----|-------|------|
| Centre Wavelength                | С      | 840 | 850 | 860   | nm   |
| Receiver Sensitivity             | Pmin   |     |     | -11.1 | dBm  |
| Output Differential<br>Impedance | RIN    | 90  | 100 | 110   | Ω    |
| Receiver Overload2               | Ртах   | -1  |     |       | dBm  |
| Optical Return Loss              | ORL    |     |     | -12   | dB   |
| LOS De-Assert                    | LOSD   |     |     | -12.5 | dBm  |
| LOS Assert                       | LOSA   | 25  |     |       | dBm  |




## F5 COMPATIBLE Networks OPT-0025-00

| Build It Bigger | Build It Faster. | Build It Sooner. |
|-----------------|------------------|------------------|
|-----------------|------------------|------------------|

| LOS Hysteresis |      | 0.5 |         | dB |
|----------------|------|-----|---------|----|
| LOS            | High | 2.0 | VCC+0.3 | V  |
|                | Low  | 0   | 0.8     |    |

### **PIN Assignment and Function Definitions**

**PIN Assignment** 



Top Side Viewed from Top



#### **PIN Definition**

| PIN | Signal Name | Description                                 |  |
|-----|-------------|---------------------------------------------|--|
| 1   | GND         | Ground (1)                                  |  |
| 2   | Tx2n        | CML-I Transmitter 2 Inverted Data Input     |  |
| 3   | Тх2р        | CML-I Transmitter 2 Non-Inverted Data Input |  |
| 4   | GND         | Ground (1)                                  |  |
| 5   | Tx4n        | CML-I Transmitter 4 Inverted Data Input     |  |
| 6   | Тх4р        | CML-I Transmitter 4 Non-Inverted Data Input |  |
| 7   | GND         | Ground (1)                                  |  |
| 8   | ModSelL     | LVTLL-I Module Select                       |  |
| 9   | ResetL      | LVTLL-I Module Reset                        |  |
| 10  | VCCRx       | +3.3V Power Supply Receiver (2)             |  |
| 11  | SCL         | LVCMOS-I/O 2-Wire Serial Interface Clock    |  |
| 12  | SDA         | LVCMOS-I/O 2-Wire Serial Interface Data     |  |
| 13  | GND         | Ground (1)                                  |  |
| 14  | Rx3p        | CML-O Receiver 3 Non-Inverted Data Output   |  |
| 15  | Rx3n        | CML-O Receiver 3 Inverted Data Output       |  |
| 16  | GND         | Ground (1)                                  |  |
| 17  | Rx1p        | CML-O Receiver 1 Non-Inverted Data Output   |  |
| 18  | Rx1n        | CML-O Receiver 1 Inverted Data Output       |  |
| 19  | GND         | Ground (1)                                  |  |
| 20  | GND         | Ground (1)                                  |  |
| 21  | Rx2n        | CML-O Receiver 2 Inverted Data Output       |  |



| Rx2p | CML-O Receiver 2 Non-Inverted Data Output |  |  |  |
|------|-------------------------------------------|--|--|--|
| GND  | Ground (1)                                |  |  |  |

| •  |         |                                             |  |
|----|---------|---------------------------------------------|--|
| 24 | Rx4n    | CML-O Receiver 4 Inverted Data Output       |  |
| 25 | Rx4p    | CML-O Receiver 4 Non-Inverted Data Output   |  |
| 26 | GND     | Ground (1)                                  |  |
| 27 | ModPrsL | Module Present                              |  |
| 28 | IntL    | Interrupt                                   |  |
| 29 | VCCTx   | +3.3V Power Supply Transmitter (2)          |  |
| 30 | VCC1    | +3.3V Power Supply                          |  |
| 31 | LPMode  | LVTLL-I Low Power Mode                      |  |
| 32 | GND     | Ground (1)                                  |  |
| 33 | Тхзр    | CML-I Transmitter 3 Non-Inverted Data Input |  |
| 34 | Тхзп    | CML-I Transmitter 3 Inverted Data Input     |  |
| 35 | GND     | Ground (1)                                  |  |
| 36 | Тх1р    | CML-I Transmitter 1 Non-Inverted Data Input |  |
| 37 | Tx1n    | CML-I Transmitter 1 Inverted Data Input     |  |
| 38 | GND     | Ground (1)                                  |  |

Notes:

22 23

1. All Ground (GND) are common within the QSFP+ module and all module voltages are referenced to this potential unless noted otherwise. Connect these directly to the host board signal common ground plane.

2. V<sub>CC</sub>Rx, Vcc1 and V<sub>CC</sub>Tx are the receiving and transmission power suppliers and shall be applied concurrently. The connector pins are each rated for a maximum current of 500mA.