

Quick Spec:

Part Number: QSFP-40GBase-LR4-PSM

QSFP-40GBase-LR4-PSM-EXT QSFP-40GBase-LR4-PSM-IND

Form Factor: **QSFP** TX Wavelength: 1310nm Reach: 10km Cable Type: SMF Rate Category: 40GBase LR4-PSM Interface Type: DDM: Yes Connector Type: MPO Optical Power Budget: 8.1 dB

TX Power Min/Max: -4.5 to +3.0 dBm RX Power Min/Max: -12.6 to +2.3 dBm

Product Features

- 4 Parallel lanes design
- Up to 11.2 Gbps data rate per channel
- Aggregate Bandwidth of up to 44.0G
- QSFP+ MSA compliant
- Up to 10km transmission on single mode fiber (SMF)
- Can connect to 4 pcs SFP+LR directly with a MPO –LC patchcord
- Maximum power consumption 3.5W
- Single +3.3V power supply
- · Operating case temperature:
 - Standard: 0°C to +70 °CExtended -5°C to +85 °C
 - Industrial -40°C to +85 °C
- RoHS-6 compliant

Applications

- 40G Ethernet
- Infiniband QDR, DDR and SDR
- Datacenter and Enterprise networking

Overview

The 40GBase-LR4-PSM is a parallel 40 Gbps Quad Small Form-factor Pluggable (QSFP+) optical module. It provides increased port density and total system cost savings. The QSFP+ full-duplex optical module offers 4 independent transmit and receive channels, each capable of 10 Gbps operation for an aggregate data rate of 40 Gbps on 10km of single mode fiber. An optical fiber ribbon cable with an MTP/MPO connector can be plugged into the QSFP+ module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through a z-pluggable 38-pin connector per MSA requirement. The module operates with single +3.3V power supply. LVCMOS/LVTTL global control signals, such as Module Present, Reset, Interrupt and Low Power Mode, are available with the modules. A 2-wire serial interface is available to send and receive more complex control signals, and to receive digital diagnostic information. Individual channels can be addressed and unused channels can be shut down for maximum design flexibility. The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module can be managed through the I2C two-wire serial interface.

Functional Diagram

This product converts the 4-channel 10 Gbps electrical input data into CWDM optical signals (light), by a driven 4-wavelength Distributed Feedback Laser (DFB) array. The light is combined by the MUX parts as a 40 Gbps data, propagating out of the transmitter module from the SMF. The receiver module accepts the 40 Gbps CWDM optical signals input, and de-multiplexes it into 4 individual 10Gbps channels with different wavelengths. Each wavelength is collected by a discrete avalanche photodiode (APD), and then outputted as electric data after amplified first by a TIA and then by a post amplifier. Figure 1 shows the functional block diagram of this product.

A single +3.3V power supply is required to power up this product. Both power supply pins VccTx and VccRx are internally connected and should be applied concurrently. As per MSA specifications the module offers 7 low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, LPMode, ModPrsL and IntL.

Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus – individual ModSelL lines must be used.

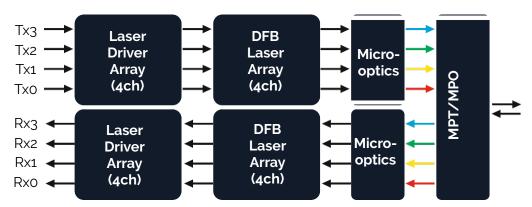


Figure 1. Functional diagram

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the QSFP+ memory map.

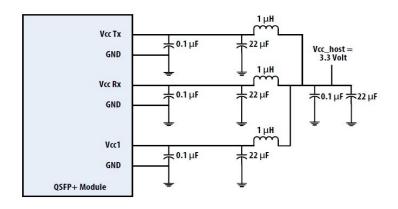
The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Low Power Mode (LPMode) pin is used to set the maximum power consumption for the product in order to protect hosts that are not capable of cooling higher power modules, should such modules be accidentally inserted.

Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground though a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state.

Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.

FluxLight, Inc. Tel: 888-874-7574


Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Storage Temperature	Ts	-40	+85	°C
Relative Humidity	RH	0	85	%
Power Supply Voltage	Vcc	-0.5	3.6	V
Damage Threshold each lane	THd	3.3		dBm

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Operating Case Temp (Standard)	TOP	0		+70	°C
Operating Case Temp (Industrial)	TOP	-40		+85	°C
Power Supply voltage	Vcc	3.135	3.3	3.465	V
Data Rate, each lange	DR		10.3125	11.2	Gb/s
Control Input Voltage High	Vcc	2			V
Control Input Voltage Low		0		0.8	V
Link Distance with G652	D			10	Km

Recommended Power Supply Filter

Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Power Consumption				3.5	Watts
Supply Current	Icc			1.1	Amps
Transceiver Power-on Initialization Time		2000 ms			

Electrical Characteristics – Transmitter (each lane)

Fax: 866-267-3045

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Single-ended Input Voltage Tolerance (Note 2)		-0.3		4.0	V	Referred to TP1 signal common
AC Common Mode Input Voltage Tolerance (RMS)		15			mV	
Differential Input Voltage Swing Threshold		50			mVpp	LOSA Threshold
Differential Input Voltage Swing	$V_{in,pp}$	190		700	mV_{pp}	$V_{in,pp}$
Differential Input Impedence	Z_{in}	90	10	110	Ω	
Differential Input Return Loss		0.17			UI	
J2 Jitter Tolerance	J12	0.29			UI	
J9 Jitter Tolerance	J19	0.29			UI	
Data Dependent Pulse Width Shrinkage (DDPWS) Tolerance		0.07			UI	
Eye Mask Coordinates {X1, X2, Y1, Y2}		0.11, 0.31 95, 350			UI mV	Hit Ratio = 5x10 ⁻⁵

FluxLight, Inc. Tel: 888-874-7574

Electrical Characteristics – Receiver (each lane)

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Single-ended Output Voltage Threshold		-0.3		4.0	V	Referred to signal common
AC Common Mode Output Voltage (RMS)				7.5	mV	
Differential Output Voltage Swing	Vout,pp	300		850	mVpp	
Differential Output Impedance	zout	90	100	110	Ohm	
Termination Mismatch at 1MHz				5	%	
Differential Output Return Loss	See	IEEE 802.	3ba 86A.4.	2.1	dB	10MHz - 11.1GHz
Common mode Output Return Loss	See	EEEE 802.	3ba 86A.4.	2.2	dB	10MHz - 11.1GHz
Output Transition Time		28			ps	20% to 80%
J2 Jitter Tolerance	Jo2			0.42	UI	
J9 Jitter Tolerance	Jo9			0.65	UI	
Eye Mask Coordinates {X1, X2, Y1, Y2}	0.29, 05 150, 425		UI mV	Hit Ratio = 5x10 ⁻⁵		

Notes:

- 1. Power-on initialization time is the time from when the power supply voltages reach and remain above the minimum recommended operating supply voltages to the time when the module is fully functional.
- 2. The single ended input voltage tolerance is the allowable range of the instantaneous input signals.

FluxLight, Inc. Tel: 888-874-7574

Fax: 866-267-3045

Page 5 of 10 Revision: 20.06

Optical Characteristics - Transmitter

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Centre Wavelength	λ0	1260	1310	1355	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Average Launch Power (each Lane)	PAVG	-6		1.5	dBm	1
Optical Modulation Amplitude (OMA) (each Lane)	РОМА	-4.5		3.0	dBm	2
Difference in Launch Power between any Two Lanes	Ptx,diff			6.5	dB	
(OMA)						
Launch Power in OMA minus Transmitter and	OMATDP	-5.5			dBm	
Dispersion Penalty (TDP), each Lane						
TDP (each Lane)	TDP			3.2	dB	
Extinction Ratio	ER	3.5			dB	
Relative Intensity Noise	RIN			-128	dB/Hz	
Optical Return Loss Tolerance	TOL			12	dB	
Transmitter Reflectance	Rt			-12	dB	
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}				
Average Launch Power OFF (each Lane	Poff			-30	dBm	

^{1.} The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.

FluxLight, Inc. Tel: 888-874-7574

Page 6 of 10 Revision: 20.06

^{2.} Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Optical Characteristics - Receiver

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Centre Wavelength	λο	1260	1310	1355	nm	
Damage Threshold (each Lane)	Thd	3.3			dBm	3
Average Power at Receiver Input (each Lane)		-12.7		2.3	dBm	
Receiver Reflectance	RR			-12	dB	
Receiver Sensitivity in OMA (each Lane)	SEN			-12.6	dBm	Informative
Difference in Receive Power between any Two Lanes (OMA)	Prx,diff			7.5	dB	
LOS Assert	LOSA	-30			dBm	
LOS Deassert	LOSD			-15	dBm	
LOS Hysteresis	LOSH	0.5			dB	
Receiver Electrical 3 dB upper Cutoff Frequency, each Lane	Fc			12.3	GHz	

Notes:

- 1. The maximum transmitter average optical power of 1.5 dBm is well within the guardband of receiver overload specifications of commercially available 10GBASE-LR SFP+ transceivers offered by InnoLight and other vendors.
- 2. Even if the TDP < 1 dB, the OMA min must exceed the minimum value specified here.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.

Digitial Diagnostics Function

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

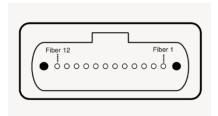
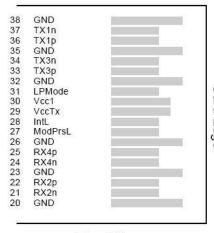
Parameter	Symbol	Min	Тур	Max	Unit	Notes
Temperature monitor absolute error	DMITEMP	-3		3	deg. C	Over operating temperature range
Supply voltage monitor absolute error	DMIVCC	-0.1		0.1	V	Over Full operating range
Channel RX power monitor absolute error	DMIRX_CH	-2		2	dB	1
Channel Bias current monitor	DMIIbias_CH	-10%		10%	mA	
Channel TX power monitor absolute error	DMITX_CH	-2		2	dB	1

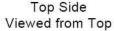
Note 1: Due to measurement accuracy of different multi-mode fibers, there could be an additional $\pm 1 dB$ fluctuation, or $\pm 3 dB$ total accuracy.

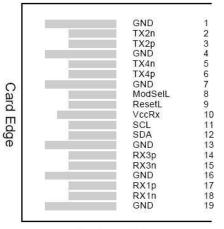
FluxLight, Inc. Tel: 888-874-7574

Mode-Conditioning Patch Cable

Figure 2. shows the orientation of the multi-mode facets of the optical connector.


Figure 2. Optical connector


Fiber	Description	PIN	Description
1	Rx (0)	7	Not used
2	Rx (1)	8	Not used
3	Rx (2)	9	Tx (3)
4	Rx (3)	10	Tx (2)
5	Not used	11	Tx (1)
6	Not used	12	Tx (0)

PIN Assignment and Function Definitions

PIN Assignment

Bottom Side Viewed from Bottom

PIN Definition

PIN	Signal Name	Description
1	GND	Ground (1)
2	Tx2n	CML-I Transmitter 2 Inverted Data Input
3	Tx2p	CML-I Transmitter 2 Non-Inverted Data Input
4	GND	Ground (1)
5	Tx4n	CML-I Transmitter 4 Inverted Data Input
6	Tx4p	CML-I Transmitter 4 Non-Inverted Data Input
7	GND	Ground (1)
8	ModSelL	LVTLL-I Module Select
9	ResetL	LVTLL-I Module Reset
10	VCCRx	+3.3V Power Supply Receiver (2)
11	SCL	LVCMOS-I/O 2-Wire Serial Interface Clock
12	SDA	LVCMOS-I/O 2-Wire Serial Interface Data
13	GND	Ground (1)
14	Rx3p	CML-O Receiver 3 Non-Inverted Data Output
15	Rx3n	CML-O Receiver 3 Inverted Data Output
16	GND	Ground (1)
17	Rx1p	CML-O Receiver 1 Non-Inverted Data Output
18	Rx1n	CML-O Receiver 1 Inverted Data Output
19	GND	Ground (1)
20	GND	Ground (1)
21	Rx2n	CML-O Receiver 2 Inverted Data Output
22	Rx2p	CML-O Receiver 2 Non-Inverted Data Output
23	GND	Ground (1)
24	Rx4n	CML-O Receiver 4 Inverted Data Output
25	Rx4p	CML-O Receiver 4 Non-Inverted Data Output
26	GND	Ground (1)
27	ModPrsL	Module Present
28	IntL	Interrupt
29	VCCTx	+3.3V Power Supply Transmitter (2)
30	VCC1	+3.3V Power Supply
31	LPMode	LVTLL-I Low Power Mode
32	GND	Ground (1)
33	Тх3р	CML-I Transmitter 3 Non-Inverted Data Input
34	Tx3n	CML-I Transmitter 3 Inverted Data Input
35	GND	Ground (1)
36	Tx1p	CML-I Transmitter 1 Non-Inverted Data Input
37	Tx1n	CML-I Transmitter 1 Inverted Data Input
38	GND	Ground (1)

Notes:

- 1. All Ground (GND) are common within the QSFP+ module and all module voltages are referenced to this potential unless noted otherwise. Connect these directly to the host board signal common ground plane.
- 2. V_{CC}Rx, Vcc1 and V_{CC}Tx are the receiving and transmission power suppliers and shall be applied concurrently. The connector pins are each rated for a maximum current of 500mA.

FluxLight, Inc.

Revision: 20.06 Tel: 888-874-7574 E-mail: sales@fluxlight.com Fax: 866-267-3045 www.fluxlight.com

Licensing

The following U.S. patents are licensed by Finisar to FluxLight, Inc.: U.S. Patent Nos: 7,184,668, 7,079,775, 6,957,021, 7,058,310, 6,952,531, 7,162,160, 7,050,720

FluxLight, Inc. Tel: 888-874-7574

Page 10 of 10 Revision: 20.06