

Build It Bigger, Build It Faster, Build It Sooner,

QSFP28-100GBase-ER4L Quick Spec:

Part Number: QSFP28-100GBase-ER4L

> QSFP28-100GBase-ER4L-EXT QSFP28-100GBase-ER4L-IND

Form Factor: QSFP28 TX Wavelength: 1310nm Reach: 40km Cable Type: **SMF** Rate Category: 100G Interface Type: ER4L DDM: Yes Connector Type: Dual-LC

QSFP28-100GBase-ER4L Features

- Hot pluggable QSFP28 MSA form factor
- Compliant to Ethernet 100GBASE-ER4 Lite and OTN OTU4 4L1-9C1F Lite
- Up to 30km reach for G.652 SMF without FEC
- Up to 40km reach for G.652 SMF with FEC
- Single +3.3V power supply
- Transmitter: 4x28Gb/s LAN WDM TOSA (1295.56, 1300.05, 1304.58, 1309.14nm)
- Receiver: 4x28Gb/s APD ROSA
- Maximum power consumption 4.2W
- Duplex LC receptacle
- RoHS-6 compliant
- **Operating Case Temperature**

○ Standard: 0°C to +70°C Extended: -5°C to 85°C o Industrial: -40°C to +85°C

QSFP28-100GBase-ER4L Applications

- 100GBASE-ER4 Ethernet Links
- **OTN OTU4**

Product Description

This product is a 100Gb/s transceiver module designed for optical communication applications compliant to Ethernet IEEE 802.3ba standard. The module converts 4 input channels of 28Gb/s electrical data to 4 channels of LAN WDM optical signals and then multiplexes them into a single channel for 100Gb/s optical transmission. Reversely on the receiver side, the module de-multiplexes a 100Gb/s optical input into 4 channels of LAN WDM optical signals and then converts them to 4 output channels of electrical data.

The central wavelengths of the 4 LAN WDM channels are 1295.56, 1300.05, 1304.58 and 1309.14 nm as members of the LAN WDM wavelength grid defined in IEEE 802.3ba standard. The high-performance LAN WDM transmitters and high sensitivity APD receivers provide superior performance for 100Gigabit applications up to 32km links and compliant to optical interface with 100GBASE-ER4 lite requirements.

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP28 Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference.

ABSOLUTE MAXIMUM RATINGS

The operation in excess of any absolute maximum ratings might cause permanent damage to this module.

FluxLight, Inc.

Tel: 888-874-7574 | Fax: 866-267-3045 E-mail: sales@fluxlight.com | www.fluxlight.com

Page 1 of 6 Revision: 20.06

Build It Bigger. Build It Faster. Build It Sooner.

Dual-LC, 1310nm, SMF, 40km

Parameter	Symbol	Min	Max	Unit	Notes
Storage Temperature	TS	-40	85	degC	
Operating Case Temperature - Commercial	TOP	0	70	degC	
Operating Case Temperature – Extended	TOP	-5	85	degC	
Operating Case Temperature - Industrial	TOP	-20	85	degC	
Power Supply Voltage	VCC	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	0	85	%	
Damage Threshold, each Lane	THd	-3		dBm	

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbo I	Min	Typical	Max	Unit	Notes
Operating Case Temperature - Commercial	TOP	0	70	degC		
Operating Case Temperature – Extended	TOP	-5	85	degC		
Operating Case Temperature - Industrial	TOP	-20	85	degC		
Power Supply Voltage	VCC	3.135	3.3	3.465	V	
Data Rate, each Lane			25.78125		Gb/s	
Control Input Voltage High		2		Vcc	V	
Control Input Voltage Low		0		0.8	V	
Link Distance with G.652	D	0.002		40	km	
Operating Case Temperature	TOP	0		70	degC	
Power Supply Voltage	VCC	3.135	3.3	3.465	V	

Electrical Characteristics

Parameter	Test Point	Min	Typical	Max	Unit	Notes
Power Consumption				4.2	W	
Supply Current	lcc			1.27	Α	
Single-ended Input Voltage Tolerance (Note 1)		-0.3		4.0	V	Referred to TP1 signal common
AC Common Mode Input Voltage Tolerance		15			mV	RMS
Differential Input Voltage Swing	Vin,pp			900	mVpp	
Differential Input Impedance	Zin	90	100	110	Ohm	
Single-ended Output Voltage		-0.3		4.0	V	Referred to signal common
AC Common Mode Output Voltage				7.5	mV	RMS
Differential Output Voltage Swing	Vout,pp	300		850	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	

Notes:

FluxLight, Inc.
Tel: 888-874-7574 | Fax: 866-267-3045 | E-mail: sales@fluxlight.com | www.fluxlight.com | www.fluxlight.com

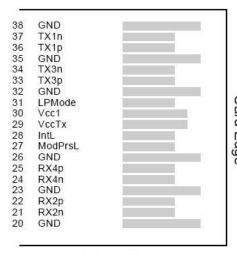
^{1.} The single ended input voltage tolerance is the allowable range of the instantaneous input signals.

Optical Characteristics

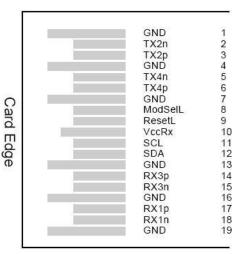
Parameter	Symbol	Min	Typical	Max	Unit	Notes	
raidinotei	LO	1294.53	1295.56	1296.59	nm	110100	
	L1	1299.02	1300.05	1301.09	nm		
Wavelength Assignment	L2	1303.54	1304.58	1305.63	nm		
	L3	1308.09	1309.14	1310.19	nm		
	LO	Transm		1010.15	11111		
Side Mode Suppression Ratio	SMSR	30	rttor		dB		
Total Average Launch Power	PT			12.5	dBm		
Average Launch Power, each Lane	PAVG	-2.5		6.5	dBm		
OMA, each Lane	POMA	0.5		6.5	dBm	1	
Difference in Launch Power	Ptx,diff	0.0		3	dB		
between any Two Lanes (OMA)	,						
Launch Power in OMA minus							
Transmitter and Dispersion		-0.5			dBm		
Penalty (TDP) cach Lane		-0.5			иын		
(TDP), each Lane TDP, each Lane	TDP			3.0	dB		
	ER	4.5		3.0			
Extinction Ratio		4.5		20	dB		
Optical Return Loss Tolerance	TOL			20 -12	dB		
Transmitter Reflectance	RT	(0.05.0.4	0.45.0.05.0		dB		
Eye Mask{X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4,	0.45, 0.25, 0	0.28, 0.4}			
Average Launch Power OFF	Poff			-30	dBm		
Transmitter, each Lane		Dessi					
Damaga Throshold, agab Lang	THd	Receiv	/er		dBm		
Damage Threshold, each Lane	Inu	-0			иын		
Average Receive Power, each Lane		-20.5		-7	dBm		
Receive Power (OMA), each Lane				-7	dBm		
Receiver Sensitivity (OMA,						for BER = 1x10-	
100GE), each Lane	SEN			-15	dBm	12	
Receiver Sensitivity (OMA,	SEN					For BER = 5x10 ⁻	
100GE), each Lane	02.1			-18.5	dBm	5	
Receiver Sensitivity (OMA, OTU4),						for BER = 5x10 ⁻	
each Lane	SEN			-14	dBm	12	
Receiver Sensitivity (OMA, OTU4),							
each Lane	SEN			-18	dBm	for BER = 5x10 ⁻⁵	
Difference in Receive Power	D ""						
between any Two Lanes (OMA)	Prx,diff			3.6	dB		
LOS Assert	LOSA		-26		dBm		
LOS Deassert	LOSD		-24		dBm		
LOS Hysteresis	LOSH	0.5			dB		
Receiver Electrical 3 dB upper				24	CI I-		
Cutoff Frequency, each Lane	Fc			31	GHz		
Conditions of Stress Receiver Sensitivity Test (Note 5)							
Vertical Eye Closure Penalty, each			2.5		dB		
Lane			2.5		UD		
Stressed Eye J2 Jitter, each Lane			0.33		UI		
Stressed Eye J9 Jitter, each Lane			0.48		UI		

Notes:

^{1.} Even if the TDP < 1 dB, the OMA min must exceed the minimum value specified here.



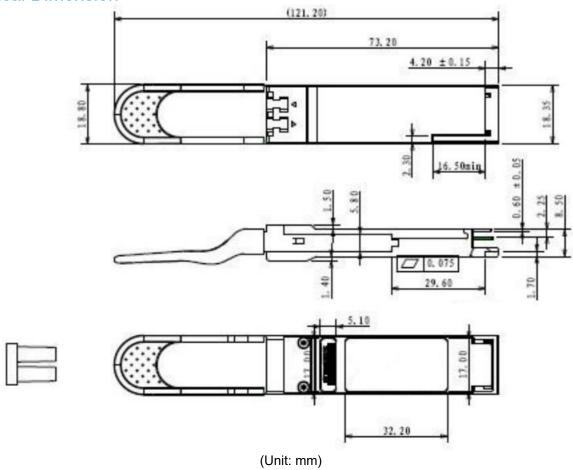
Digital Diagnostic Functions


The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.

Parameter	Symbol	Min	Max	Unit	Notes
Temperature monitor absolute error	DMI_Temp	-3	3	degC	Over operating temp
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	Full operating range
Channel RX power monitor absolute error	DMI_RX	-3	3	dB	Per channel
Channel Bias current monitor	DMI_Ibias	-10%	10%	mA	Per channel
Channel TX power monitor absolute error	DMI_TX	-3	3	dB	Per channel

PIN Assignment and Description

Top Side Viewed from Top


Bottom Side Viewed from Bottom Build It Bigger. Build It Faster. Build It Sooner.

PIN#	Logic	Symbol	Description	Notes
1	3	GND	Ground	
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7		GND	Ground	
8	LVTLL-I	ModSelL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	
20		GND	Ground	
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3 V Power Supply transmitter	
30		Vcc1	+3.3 V Power Supply	
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	

FluxLight, Inc.

Tel: 888-874-7574 | Fax: 866-267-3045 | E-mail: sales@fluxlight.com | www.fluxlight.com

Mechanical Dimension

ESD

This transceiver is specified as ESD threshold 1kV for SFI APDs and 2kV for all other electrical input APDs, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Laser Safety

This is a Class 1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

Licensing

The following U.S. patents are licensed by Finisar to FluxLight, Inc.: U.S. Patent Nos: 7,184,668, 7,079,775, 6,957,021, 7,058,310, 6,952,531, 7,162,160, 7,050,720

FluxLight, Inc. Tel: 888-874-7574 E-mail: sales@fluxlight.com | www.fluxlight.com Fax: 866-267-3045